

Chem Lab Station 1

156 pts

Overall Score

Overall Rank

KEY

Chem Lab Student Answer Sheet

Team #	<u>KEY</u>
School Name: _	<u>KEY</u>
Student Name:	KEY _

Student Name: __KEY __

Note to graders: All problems are worth 2 points each except problems 13-22 in Station 1 which are worth 1 points each. There is no partial credit for any problem unless otherwise specified or agreed upon by all exam graders. There are 156 possible points: 74 pts from Station 1 and 82 pts from Station 2. If tallying pts by page, there are 16 possible points (pp) on page 1; 18 pp on page 2; 40 pp on page 3; 38 pp on page 4; and 44 pp on page 5.

STATION 1: OXIDATION/REDUCTION

- Give three (2) points for a data table that contains at least six electrode combinations with reasonable voltages recorded for each combination (-3V to 3V).
 - o Give two (1) points for 2-5 electrode combinations with reasonable voltages.
 - Give no credit for 1 electrode combination, if data is missing, unorganized, or unreasonable. No credit if there isn't at least one mention units.

2	$2 H^+ + 2 e^- \rightarrow H_2$	
3	$\underline{\text{Fe}} \rightarrow \overline{\text{Fe}^{3+}} + 3 \underline{\text{e}}$	
4	$\underline{2} \underline{H}^+ + \underline{2} \underline{e}^- \rightarrow \underline{H}_{\underline{2}}$	
5	$Zn \rightarrow Zn^{2+} + 2e^{-}$	
6	Mg, Zn, Fe	
7	<u>0.00027 Watts (W) or 0.27 mW</u>	
8	<u> 296</u>	1,

9.
$$\underline{\text{Co}^{2+} \rightarrow \text{Co}^{3+} + \text{1e}^{-}(\text{oxidation})}$$

10. ClO₃ +
$$6 H^+$$
 + $6 e^- \rightarrow Cl^-$ + $3 H_2O$ (reduction)

11.
$$SO_3^{2^-} + 2OH^- \rightarrow SO_4^{2^-} + H_2O + 2e^-$$
 (oxidation)

12.
$$\underline{Pb(OH)_4^{2-} + ClO^- \rightarrow PbO_2 + Cl^- + 2OH^- + H_2O}$$

13.
$$\underline{\text{Cr}} \rightarrow \underline{\text{Cr}}^{3+} + \underline{3} \, \underline{\text{e}}^{-}$$

14.
$$\underline{\text{Cu}^{2+} + 2 e^{-} \rightarrow \text{Cu}}$$

15.
$$2 \text{ Cr} + 3 \text{ Cu}^{2+} \rightarrow 2 \text{ Cr}^{3+} + 3 \text{ Cu}$$

- 16. _____Cr____
- 17. <u>Cu²⁺</u>
- 18. <u>Cu²⁺</u>
- 19. <u>Cr</u>

Note: Problems
13 – 22 in Station 1
are worth 1 point
each. There is no
partial credit
available.

- 21. <u>Copper (cathode)</u>
- 22. ____**1.08 V**____

23. a) $\underline{PbO_2 + Pb + 4H^+ + 2SO_4^{2-} \rightarrow 2PbSO_4 + 2H_2O}$

- b) $\underline{Pb^0} \rightarrow \underline{Pb^{2+}} + \underline{2e^-}$
- c) $\underline{Pb^{4+} + 2e^{-} \rightarrow Pb^{2+}}$
- d) Pb + Pb⁴⁺ \rightarrow 2 Pb²⁺
- e) ____12V_____

Note: Each problem (21a, 21b, etc.) is worth 2 points. No partial credit.

f) $2 \text{ PbSO}_4 + 2 \text{ H}_2\text{O} \rightarrow \text{PbO}_2 + \text{Pb} + 4 \text{ H}^+ + 2 \text{ SO}_4^{2-}$

- g) <u>H₂SO₄ (sulfuric acid)</u>
- 24. a) $\underline{2 \operatorname{Ag}^{+} + \operatorname{Cd}} \rightarrow 2 \operatorname{Ag} + \operatorname{Cd}^{2+}$
 - b) __+**0.40 V**____
 - c) <u>Anions flow into the cadmium half cell</u>
 - d) <u>Voltage will INCREASE</u>
 - e) <u>Voltage will DECREASE</u>
- 25. <u>B</u> 29. <u>E</u>
- 26. <u>D</u> 30. <u>A</u>
- 27. <u>C</u> 31. <u>C</u>
- 26. <u>**B**</u> 32. <u>**A**</u>

All problems are worth 2 pts each. No partial credit unless otherwise specified.

STATION 2: Periodicity

16. ____**Decreases** _

17. ____**Increases** _

18. ____**Increases**

19. ___**Decreases**__

$CaO + H_2O \rightarrow Ca(OH)_2$
$MgO \ + \ H_2O \ \rightarrow \ Mg(OH)_2$
$CO_2 + H_2O \rightarrow H_2CO_3$
$SO_2 + H_2O \rightarrow H_2SO_3$

5. <u>Ca and Mg are metals; C and S are nonmetals</u>		
6. Metal oxides in water produce bases; nonmetal oxides in water produce acids		
7 pH = 13.5 (give credit for any answer between 12.5 and 14.0)		
8. (Dmitri) Mendeleev		
9. (Henry) Moseley		
10. <u>Ununoctium</u>		
11. <u>Groups 3-11 (do not give credit if group 12 is mentioned)</u>		
12. <u>Increases</u>		
13. <u>Decreases</u>		
14 <u>Decreases</u>		
15. <u>Increases</u>		

_38_pts

20. <u>Bismuth (Bi)</u> 21. <u>Uranium (U)</u>	All problems are worth 2 pts each. No partial credit unless otherwise specified			
22. <u>Technetium (Tc)</u>	uniess outer wise specified			
23. <u>Hexagonal</u>	any order,			
Cubic	2 pts. each			
24. London Dispersion Forces (or Dispersion forces; do not accept Van der Waals Forces)				
25Chlorine molecules have fewer electrons and	or lower molecular mass than			
bromine molecules. (Do not accept Cl has weaker intermolecular forces)				
261 s^2 2 s^2 2 p^6 3 s^2 3 p^6 3 d^2 4 s^2 (give credit if 3 d^2	4s ² are inverted)			
271s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² (no 4s electrons)				
28Ti ³⁺ has a lone 3d electron that can undergo trans	sitions between split "d" orbitals,			
releasing photons in the visible region. Sc ³⁺ has no	"d" electrons (must include full			
response for credit)				
291 s^2 2 s^2 2 p^6 3 s^2 3 p^6 3 d^5 4 s^1 (give credit if 3 d^5	d ⁵ 4s ¹ are inverted)			
30Rare Earth Metals				
31. $\underline{2 \text{ Cl}^{-} \rightarrow \text{ Cl}_{2} + 2 \text{ e}^{-}}$				
32. $\underline{Na}^+ + \underline{1e}^- \rightarrow \underline{Na}$				
33. <u>B</u>				
34. <u>C</u>				
35. <u>B</u>				
36. <u>C</u>				
37. <u>B</u>				
38. <u>A</u>				
39. <u>A</u>				
40 B	_44_pts			