

Exploring the World of Science

Materials Science

Directions:

You many use ONE nonprogrammable calculator and ONE 3-ring binder for this test.

This test is designed for two people and a 50 minute time period. Your team should be able to complete all questions on this test.

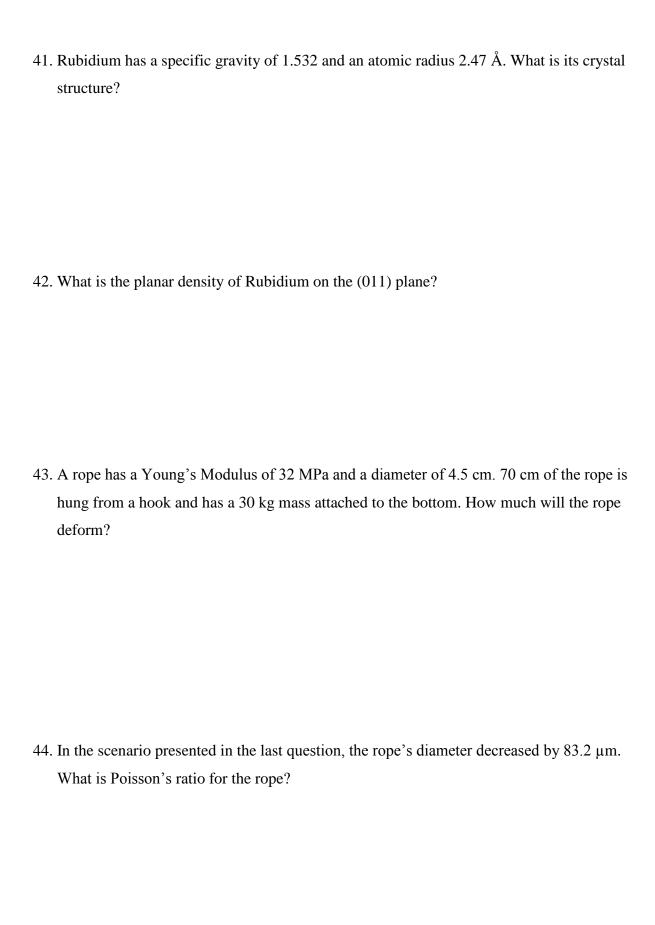
A periodic table is provided on the last page. It is necessary for some of the questions. Use it.

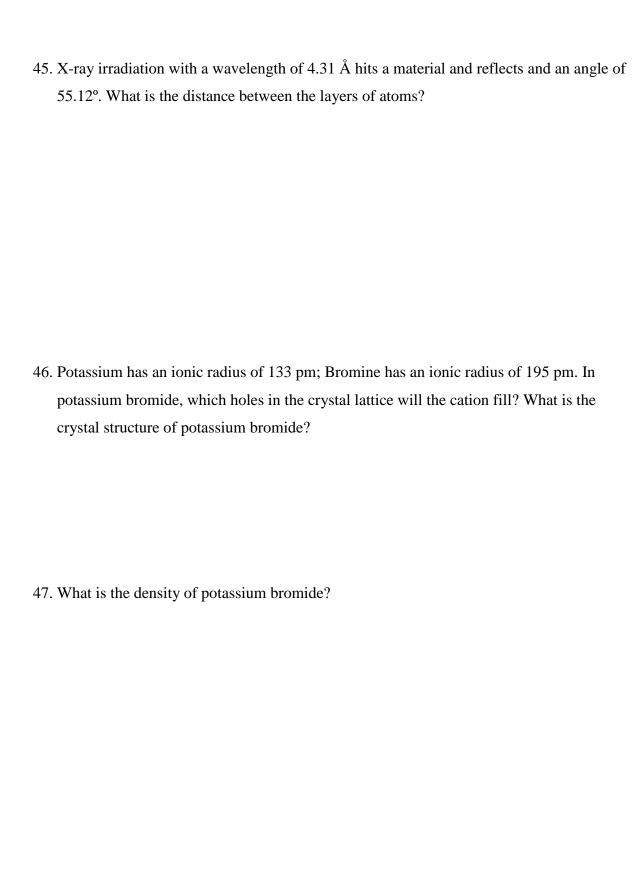
Good Luck!

1.	What is the deformation after elastic deformation and before necking called?
2.	Which of the three-dimensional Bravais lattices is the least symmetrical?
3.	What is the coordination number of the diamond cubic crystal structure?
4.	Material 1 has a higher Young's Modulus and a lower Bulk Modulus than Material 2. What can be determined about the Poisson's ratio of the materials?
5.	What is the term for a eutectic-like point that involves three solid phases?
6.	Which two metals are the main components of modern brass?
7.	What type of material are inorganic, nonmetallic solids mainly composed of ionic and covalent bonds?
	What is the surface area to volume ratio of BCC structure in terms of R (atomic radius)?
9.	What are the two monoclinic Bravais lattices?
10.	If a reaction is in thermal equilibrium, what can we determine about the Gibbs free energy?
11.	Describe silicon's band gap. What property of silicon tells us this?
12.	What unit is toughness measured in? Use SI units.

13.	How can the toughness of a material be determined from its stress-strain curve?
14.	What is the term for the force between two permanent dipoles (which is a form of the Van der Waals force)?
15.	What is the numerical definition of the annealing point of a glass?
16.	What is the specific strength of a material?
17.	Which component of an optical microscope captures light and focuses it onto the specimen?
18.	Fill in the blanks: Antiflourite crystal structure can be best described as the anions in a structure with the cations filling the holes.
19.	What is the direct opposite of thixotropy?
20.	What is the term for different crystal structures of the same element?
21.	What is the approximate ratio between the shear modulus and young's modulus of metals?
22.	Explain what the hardness rating 130HV5/5 means.
23.	Explain why a one-component system cannot have a quadruple point.

	Ear questions 24.20 indicate which rectaried treatment are cases are described by the
	For questions 24-30, indicate which material treatment processes are described by the definitions provided.
24.	The process of converting rubber into more durable materials by the addition of sulfur or other curatives or accelerators.
25.	This process molds reinforced plastics. This process often involves an autoclave and results in higher fiber concentration and provides better adhesion between layers of this sandwich construction.
26.	Based on atomic diffusion, creates objects from powders.
27.	Used to manufacture materials with a resin and a matrix. In this process, reinforced fibers are pulled in through a resin. The material is then pulled into a tool that cuts and shapes
	the material using a press. In this step the resin undergoes polymerization.
28.	Involves rapid cooling to obtain material properties.
29.	Increasing temperature above the critical state and then letting the metal cool to room temperature in still air to increase ductility.
30.	This process prevents chocolate from crumbling (instead of snapping) and assures that the best form of chocolate is sold to you


31. For the following five attributes, indicate if they affect the creep rate of the material, and
if they do, if they affect it directly or inversely.
A. Temperature
B. Grain size
C. Elastic Modulus
D. Applied Stress
E. Molecular weight
32. What molecule eventually forms when the coating applied to a metal through
galvanization is oxidized?
33. What is the electron configuration of a phosphorous ion with a -2 charge?
34. Rank the following materials from greatest Young's Modulus to least: Tin, Graphite, PVC, rubber
35. Indicate whether the following materials are polymers, ceramics, metals, or composites. A. Titanium
B. Laminate
C. Polyethylene terephthalate
D. Wood
E. Alumina
E. Alumina
36. Which of the following has the highest melting point: Butane (C4H10), Ethanol (C2H6O), or Octane (C8H18)?


Use the following chart for questions 37-38.

	Type of Material	Young's Modulus (GPa)	Fracture Toughness (MPa*sqrt(m))	Melting Point (K)
Material A Metal		15	20	3410
Material B	Polymer	.31	21	520
Material C	Metal	182	34	2210

- 37. Which of the materials would most likely not undergo creep under temperatures of 1200 K?
- 38. Which of the materials would be best for a bungee cord? Why?
- 39. Zinc has the HCP structure and a specific gravity of 7.14. What its atomic radius?

40. What are the lattice parameters of Zinc?

48. To determine the shear modulus of a rubber, a 5 cm x 5 cm x 2 cm piece was prepared for experimenting. It was then subjected to various shear stresses parallel to its largest face. The table of the shear stresses applied and the resultant transverse displacements to the right was created from this experiment.

Shear Stress (kPa)	Transverse Displacement (mm)
100	1.575
150	2.362
200	3.151
250	3.937
300	4.724

		* * Actinide series				*Lanthanide series	
[227]	Ac	89	actinium	138.91	La	57	HUBBINIE
232.04	긁	90	thorium	140.12	Ce	58	Cerium
	Pa	91	protactinium	140.91	Pr	59	praseodymun
238.03	C	92	uranium	144.24	Z	60	neodymun
[237]	o O	93	eptunium	[145]	B	61	numinalio
[244]	Pu	94	plutonium	150.36	Sm	62	Samanun
[243]	Am	95	americium	151.96	Eu	63	europium
[247]	Cm	96	curium	157.25	Gd	62	gadolitildii
	BR						
[251]	Cf	98	californium	162.50	Dy	66	dyspiosium
	Es		m				
[257]	Fm	100	fermium	167.26	Er	68	erbium
[258]	Md	101	mendelevium	168.93	Tm	69	mulum
[259]	N ₀	102	nobelium	173.04	4	70	ynerolum

[223]	Ţ	francium 87	132.91	Cs	55	85.468 caesium	Rb	37	39.098	ス	potassium 19	22.990	Na	11	6.941	□.	ω	1.0079	I	_	hydrogen	
[226]	Z U	radium 88	137.33	Ва	56	87.62 barium	Sr	strontium 38	40.078	Ca	20	24.305	Mg	12	9.0122	Be	4	Kondiim			ă	
	*	89-102		*	57-70																	
							~				<u>.</u>										9	
[261]	Į,	rutherfordium 104	178.49	Ηſ	72	91.224 hafnium	Zr	Zirconium 40	47.867	=	titanium 22										% 51	
[262]	<u></u>	dubnium 105	180.95	Ta	73	92.906 tantalum	8	41	50.942	<	vanadium 23										19	
[266]	S	seaborgium 106	183.84	\$	74	95.94 tungsten	M o	molybdenum 42	51.996	ဂ္ဂ	chromium 24										79	
[264]	R S	bohrium 107	186.21	Re	75	rhenium	Tc	43	54.938	Z ⊃	manganese 25											
[269]	アン	hassium 108	190.23	S 0	76	101.07 osmium	Ru	ruthenium 44	55.845	Fe	26										ži.	
			-	=	77	102.91	R S	45	58.933	Co	27											
	_	=		Pt	78	106.42 platinum	Pd	palladium 46	58.693	Z	nickel 28										5	
[272]		unununium 111	196.97	Pu	79	107.87	Ag	47	63.546	Cu	29										8	
[277]		ununbium 112	200.59	Hg	80	112.41 mercury	Cd	48	65.39	Zn	30							78			N	
2111111			_			97	5					\vdash		-				8				
[289]		ununquadium 114	207.2	Pb	82	118.71 lead	Sn	50	72.61	Ge	germanium 32	28.086	S	14	12.011	റ	6	200			100	
			208.98	<u>ω</u>	83	121.76 bismuth	dS	antimony 51	74.922	As	arsenic 33	30.974	ס	15	14.007	Z	7	nitrogen			Ö	
			209	Po	84	127.60 polonium	Te	52	78.96	Se	selenium 34	32.065	ഗ	16	15.999	0	8	00000				
			[210]	At	85	126.90 astatine		53	79.904	ᄧ	35	35,453	<u>ဂ</u>	17	18.998	П	9	floring				
			[222]	Rn	86	131.29 radon	Xe	54	83.80	주	36	39.948	₽	18	20.180	Ne e	10	4.0026	He	2	helium	