Can't Judge a Powder By Its Color Gretchen S. Wolf Continuing Lecturer #### Purdue University Calumet Site Coordinator Purdue Regional Science Olympiad Regional Judge, 1999 to present National Judge, 2003 Columbus, Ohio 2001 Colorado Springs, CO ### Breakdown of Events #### SCIENCE OLYMPIAD EVENTS are distributed among three broad goal areas of science education: **Science Concepts** and Knowledge Can't Judge a Powder Cell Biology Disease Detectives **Forestry** **Fossils** Meteorology Metric Estimation Picture This Polymer Detectives **Qualitative Analysis** Road Scholar Science of Fitness **Science Processes** and Thinking Skills Chemistry Lab Designer Genes Dynamic Planet **Experimental Design** Physics Lab Practical Data Gathering Process Skills for Life-Sci. **Remote Sensing** Science Crime Busters **Storm The Castle** Water Quality Write It-Do It **Science** **Application** and Technology **Astronomy** **Bottle Rocket** **Bridge Building** Mission Possible Naked Egg Drop Reach for the Stars Robo-Billiards Robot Ramble Sounds of Music **Tower Building** **Wheeled Vehicle** Wright Stuff ### Can't Judge a Powder by Its Color - A team of up to 2 students - ◆50 minutes time - Subdivided - 25-35 minutes for testing - Students might want to think about working individually - 25-30 minutes for questions - 2004 changes noted in red - No flame testing will be done ## Safety in the Laboratory - Students must bring and wear: - Aprons or lab coats - OSHA approved splash goggles with indirect vents. - No tasting - Or touching of powders is allowed No open toed shoes may be worn # Safety Goggles ## Students must provide: pHydrion paper - 2. Hand lens - 3. Conductivity tester must be 9V no testers will be allowed to run on 120 volts - 4. Beral pipettes or eye droppers - 5. Test tube rack or holder if using test tubes # Students must provide: - 6. Containers appropriate for testing conductivities, solubility, etc. - One or two 50 or 100 mL beakers Size should be made compatible with the amount of powder a student will be using - Clear plastic spot plate - Nunclon ∆Multidishes and OmniTray - NNI # 12-565-75 ## Students must provide: - 7. Spatula - 8. Stirring Rod - 9. Gloves are optional #### NOTE: The team may bring no other items. Supervisors will check the equipment and have the right to disqualify a team for using equipment not on this list. ## Spatulas - ◆ Fisher Cat# 14-365B - Normal spatula found in most labs ## Spatulas - Micro Spatula - Hayman style - Fisher #21-401-25B - Type used for testing at Purdue http://www.soinc.or g/condtstr.htm Parts: wire tape 1 - LED (Light Emitting) Diode) 1 - Resistor(330 ohm, 1/4 watt) 1 - 9 volt Transistor Radio Battery 1 - Battery Clip to fit Battery) 1 - 8 inch piece Red wire 1 - 8 inch piece Black wire 1 - 4 inch piece Black - Omega.com - **◆CDH** 5021 or 5022 - Fishersci.com - ◆ 10 level RCI junior - ◆ 20 level RCI-Dx - Fishersci.com - DiST 5 - ◆ DiST 6 ## Event Leaders will provide - Definitely: - The white powder - Or a colored powder - Distilled water - 1.0 M NaOH - 1.0 M HCl - A blue or black pen - A pencil - May also provide: - Thermometer - Calculator - Balance - Hot plate - An observation sheet - Anything else the supervisor decides to distribute. #### Event Leaders will announce - Whether refills of the solid will be provided - Whether there are any additional reagents and how to use them - Waste disposal rules - Clean up procedure #### The water: - Buy distilled water from the store. - Not spring water - Use procedure to degas (boil). - Adding HCl or NaOH will change conductivity of water - All tests at Purdue Calumet done with D.I. (de ionized) water from our water tanks ### The Thermometer - Control Company - Cat. No. 4378 - Traceable Lollipop Thermometer - Reads in both °F and°C - Be sure students use °C - Or a spirit thermometer #### **Neutralizing Distilled Water** - 2003-04 will be provided event leader - http://www.ncsu.edu/science_olympiad/leade_rinfo/neutralizewater.html - Boiling: - This is accomplished by boiling the water for 5-10 min. <u>Fill</u> a tightly stoppered bottle with the hot water. - Once the water is placed in the student's bottle it begins to take up CO₂. ## Flow Chart ## **Observation Sheet** | Observation Sheet for Can't June School Name: Names of participants: | | | | | | | | | |--|---|--|--|--|--|--|--|--| | Use your blue PEN to complete your observed. Write or print legibly. Please write only one observation per line. Do not write beyond the line on the right has paper. If your observation will not fit on one line, to subsequent lines. | 2.Write and circle the correct question number on the first line of the corresponding observation. | | | | | | | | | | 3.Any remembered answers are to be written below the observations written in pen. The question number should be written and circled in the right hand column as before. | | | | | | | | | 1.
2.
3 | | | | | | | | | ## Consistency - Encourage your students to be consistent with: - The size of the sample - The volume of water or any other liquid added - Perhaps, the container for testing # A way to dispense liquids - Dropper bottles - Empty soap dispenser - Small graduated cylinder ## Proper usage of pH paper - pH hydronium paper - Cut into small pieces that will fit into container for testing Proper Usage of pH paper - Do not place pH paper in a solution - Use the tip of a stirring rod to spot a small piece of pH paper - Read pH immediately ## Flow Chart for testing sample ## **Testing Various Powders** - Across each spot plate - Water, 1M HCl, 1M NaOH, 2propanol(isopropyl alcohol), methanol - Second row: pH paper - ◆ Third row: 2 drops Ca(NO₃)₂ - 2 drops Ba(NO₃)₂ - 2 drops AgNO₃ ## **Testing Various White Powders** Alum **Aspirin** Baking Powder Borax Chalk Citric acid ## **Testing Various White Powders** **Epsom Salt** Sugar Table salt ## Conductivities A solution showing conductivity A solution showing little conductivity ## Testing Various Colored Powders Copper sulfate Ferrous ammonium sulfate ## Summarizing: | | Epsom
Salt | Table
Salt | Borax | Alum | Sugar | Aspirin | Baking
Powder | Chalk | Citric acid | Ferrous
Ammonium
sulfate | Copper sulfate | |--|-----------------------------|-------------------|-------------------------------|---|---------------------|-----------|-------------------------|-------------------------|-------------|--------------------------------|-------------------| | Solubility in water | Mostly | Soluble | Very
little | Yes | Soluble | Insoluble | Slightly,
bubbling | Insoluble | Soluble | Slightly | Slightly | | conductiity | Yes | Yes | Yes | Yes | No | A little | Yes | Yes | Yes | Yes | Yes | | pH of solution | 6 | 6 | 9 | 4-5 | 7-8 | 3 | 8 | 10 | 2 | 9 | 9 | | Solubility in 1M HCl | Slightly
no gas | Soluble
no gas | Slightly
no gas | Soluble
not gas | Soluble
no gas | Insoluble | Soluble bubbles | Soluble lots of bubbles | Soluble | | Soluble | | Solubility
in 1M
NaOH | Soluble ? how much wt. ppt. | Soluble | Very
little | Slightly,
changed
to bigger
whiter
crystals | Soluble | Soluble | Soluble jelly like ppt. | Insoluble | Soluble | Soluble yellow ppt. | Soluble dark ppt. | | Solubility in 2-propanol | Insoluble | Insoluble | Insoluble | Insoluble | Slightly
soluble | insoluble | Insoluble | Soluble | Insoluble | Insoluble | Insoluble | | Solubility
in
methanol | Insoluble | Insoluble | Insoluble (?) slightly cloudy | Insoluble | Insoluble | Slightly | Slightly | Insoluble | Mostly | Insoluble | Insoluble | | PPT with Ca(NO ₃) ₂ | No ppt. | No ppt. | Wt. ppt | No ppt. | No ppt | No ppt | No ppt | No ppt. | No ppt | No ppt. | No ppt. | | PPT with Ba(NO ₃) ₂ | Wt. ppt. | No ppt. | Wt. ppt | Bright wt ppt. | No ppt | No ppt | Slight wt ppt. | No ppt. | No ppt | Wt. ppt. | Wt. ppt. | | PPT with AgNO ₃ | Small
amount
ppt. | Bright white ppt. | Wt. ppt | Very
small
amount
wt. ppt. | Brown
ppt | No ppt | Yellow
ppt. | No ppt. | No ppt | No ppt. | No ppt. | ## Scoring the Event - The judge: - will collect the samples and the pens. - issue pencils. - provide the students with the questions - Students will be told: - to write and circle the question number in the column on the right hand side of the observation sheet - Any remembered answers are to be written below the observations written in pen. The question number should be written and circled in the right hand column as before. ## **Potential Questions:** - 1. What do the crystals look like? - a. Are they: - a. colored, - b. white, - c. clear? - b. Definition of hygroscopic: - A substance having a tendency to absorb water from the atmosphere and become damp, but not form a solution - c. Do the crystals seem to absorb water from the air? - d. Or, were the crystals hygroscopic? ## Potential Questions: #### 2. Density: - a. D = m/v - b. Using a graduated cylinder: #### The judge would have to provide a balance 1) What is the calculated density of the solid? # Some potential thought questions: The students would probably answer these as additional questions. - 1) How many grams would 2mL of the solid weigh? - 2) How many mL would 3 grams occupy #### 2. Density cont: ### Relative density using a solvent: - a. Does the solid sink or float in the solvent supplied by the judge? - b. Is the solid more or less dense than the solvent supplied by the judge? - c. Potential solvents: - 1. Hexane d = 0.6591 - 2. Methanol d = 0.8100 wood alcohol, methyl alcohol - 3. Ligroin d = 0.850-0.870 painter's naphtha ### 3. Solubility - Definition: The mass of a solid substance that can be dissolved in 100 g. of solvent to form a saturated solution. - Most ionic compounds are soluble in water by undergoing the process of solvation. - 3. Most covalent compounds will not be soluble in water. ### 3. Solubility - Is the substance soluble, totally, partially, little, or not soluble? - Is the substance soluble in the extra solvent the judge provided? - c. Is the substance more or less soluble in either HCl or NaOH than it was in water? - 4. Temperature Change: The judge would have to provide a thermometer - a. This must be done only with the aqueous solution - Need a larger sample size to obtain measurable results - c. Definitions: - 1. Exothermic: a reaction that gives out heat to its surroundings, ΔH is negative, because the system loses heat. - 2. Endothermic: a reaction that takes in heat from its surroundings, ΔH is positive, because the system gains heat #### 4. Temperature Change: cont - a) What was the temperature of the water (before the powder was added)? - b) What was the temperature of the solution after the powder was added? - c) Did the temperature of the water increase or decrease when the powder was added? - d) What was the temperature change for the solution after the powder was added? - e) Was the process of dissolving endothermic or exothermic? #### 5. Conductivity: The SI unit for conductivity is Siemens (S). The scales on various devices will vary. The most important property of a conductor is the amount of current it will carry when a voltage is applied. Conductance is the inverse of resistance. Conductance = S= 1/ohm. Electrolyte: Any compound which in solution conducts electric current. The solvent is usually water. Adjectives to describe electrolytes include: strong, weak, non. Always test the solution of the powder in water (aqueous solution). Do not test powder with NaOH or HCl. #### 5. Conductivity: cont - a) Did the aqueous solution conduct electricity? - Was the aqueous solution a strong, weak or non electrolyte? ### 6. pH of the solution - a. Only test aqueous solution - ь. Correct use of pH paper #### **Definitions:** Acidic solutions have a pH <7 Basic solutions have a pH >7 - a) What is the pH of the aqueous solution? - b) Was the aqueous solution acidic or basic? #### 7. Reaction with HCl or NaOH: - a. Is there any gas produced? - b. What is the odor of any gas? - c. Is there any color change? - d. Is there any precipitate formed? - e. Is the substance more or less soluble in either HCl or NaOH than it was in water? # Potential Questions with other reagents - 8. Test solubility of powder in other reagents supplied. - Judge should indicate which reagent to use if there is more than 1 reagent - b. Is the substance soluble in the extra solvent the judge provided? - 1) What might this indicate about the bonding in the powder? ## Potential Questions with other reagents - 9. Test for precipitate formation with addition a precipitation reagent - a. Judge should indicate reagent, if more than one reagent is available - b. Judge should tell students how much reagent to add # Potential Questions with other reagents - Test for precipitate formation, cont. A solid formed from substances in solution. - a. Was a precipitate formed? - b. What color was the precipitate? - c. What was the form of the precipitate? - 1) Was it a powder? - 2) Or did it seem like jello? ## How many questions? - Question sheet can also function as the scoring sheet. - ◆ 10-12 seems to be a good number. - Give students the opportunity to note what they think is their best observation. - A question grading waste disposal and clean up of work area. ## **Question Sheet** Can't Judge a Powder by Its Color Scoring Sheet | | Scoring Sheet | | | | | | |--------------|--------------------------------------|--|--|--|--|--| | School Name: | Names of Participants (please print) | | | | | | | | | | | | | | | Team Code # | | | | | | | | Questions | | Question Values | | | | | | |--|---|-----------------|---|---|---|-----|--| | | 1 | 2 | 3 | 4 | 5 | 0 | | | A. Is the substance in a powder or crystalline form? | | 2 | 3 | 4 | 5 | 0 | | | B. What is the shape of the pieces of the powder? | | X | | | | ļ. | | | C. How much does 3 mL of this substance weigh? | 1 | 2 | 3 | 4 | 5 | 0 | | | D. Is the powder soluble in water? | | 2 | 3 | 4 | 5 | 0 | | | E. Which solvent, water or methanol is the powder more soluble in? | 1 | 2 | 3 | 4 | 5 | 0 | | | F. How well does the water, ALONE, conduct electricity? | 1 | 2 | 3 | 4 | 5 | 0 | | | G. Is WATER a strong, weak or non-electrolyte? | | 2 | 3 | 4 | 5 | 0 | | | H. What is the conductivity of the aqueous solution of the powder? | 1 | 2 | 3 | 4 | 5 | 0 | | | I. What is the pH of the aqueous solution of the powder? | 1 | 2 | 3 | 4 | 5 | 0 | | | J. Were any gases observed? | | } | | | | | | | K. What is the color of solution formed when the powder is added to NaOH? | 1 | 2 | 3 | 4 | 5 | 0 | | | L. What was the temperature change when the powder was added to the water? | 1 | 2 | 3 | 4 | 5 | 0 | | | M. Is the powder soluble in hexane? | 1 | 2 | 3 | 4 | 5 | 0 | | | N. When the powder is placed in hexane and stirred, does the powder float or sink to the bottom? | | 2 | 3 | 4 | 5 | 0 | | | O. What happened when silver nitrate was added to the aqueous solution of the powder? | 1 | 2 | 3 | 4 | 5 | 0 | | | P. Use this letter to mark what you think is your best observation | 1 | 2 | 3 | 4 | 5 | 0 | | | Total | | X | | | | /80 | | ## Thoughts: Practice, Practice, Practice - 1. Use common solids - 2. Size of sample - 3. Supply water in a wash bottle - 4. Is temperature worth it? ## Thoughts: - 5. Perhaps supply a third liquid to test solubility - Perhaps supply a test reagent solution to look for precipitates - 7. For #5 and #6 decide about waste problems - a. Is it worth is it? ## Thoughts: - 8. Where is waste from the students work to be disposed? - 9. What about clean up of work area? - 10. If judging decide on a powder and become familiar with that powder ## In closing: - Can't Judge a Powder - Gretchen Wolf may be contacted at: - Purdue University Calumet - GSWolf@calumet.purdue.edu - Or 219-989-2282 - This presentation is available at the following web site. - http://www.calumet.purdue.edu/chemphys/olympiad/ - Many thanks for this opportunity. - ©Gretchen S. Wolf 10/01/03 ## Flow chart for testing sample