| Name:s _                |                                                                                                                     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|
| Team #                  | School                                                                                                              |
| Whiting                 | Science Olympiad Invitational 2013                                                                                  |
| Multiple ( Identify the | Choice e letter of the choice that best completes the statement or answers the question.                            |
| 1.                      | <ul> <li>a. hydrogen</li> <li>b. covalent</li> <li>c. phosphate</li> <li>d. ionic</li> <li>e. sulfhydryl</li> </ul> |

Use the table of condons below to answer the following questions.

| ····       |   |                            | Secon                          | d Base                                      |                          |                  |            |
|------------|---|----------------------------|--------------------------------|---------------------------------------------|--------------------------|------------------|------------|
|            |   | U                          | С                              | Α                                           | G                        |                  |            |
|            |   | UUU — Phe UUC — Leu UUG —  | UCU -<br>UCC Ser<br>UCA UCG -  | UAU — Tyr UAC — Tyr UAA Stop UAG · · · Stop | UGU Cys UGC Stop UGG Trp | U C A G          |            |
| )ase       | C | CUU                        | CCU CCA Pro                    | CAU His CAG Gin GAG                         | CGU - CGC Arg CGA        | U<br>C<br>A<br>G | 3ase       |
| First Base | Α | AUU                        | AGU Thir<br>AGA Thir<br>AGG -  | AAU Asn<br>AAC Lys<br>AAA Lys               | AGU Ser<br>AGC AGA Arg   | U C A G          | Third Base |
|            | G | GUU -<br>GUC<br>Val<br>GUG | GCU TAIA<br>GCC AIA<br>GCA CCC | GAU Asp<br>GAC GAA GIU                      | GGU GIV                  | U<br>C<br>A<br>G |            |
|            |   |                            |                                |                                             |                          | 1                | *********  |

- 3. A possible sequence of nucleotides in the template strand of DNA that would code for the polypeptide sequence phe-leu-ile-val would be
  - a. 3' AAC-GAC-GUC-AUA 5'.
  - b. 3' AAA-GAA-TAA-CAA 5'.
  - c. 5' AUG-CTG-CAG-TAT 3'.
  - d. 3' AAA-AAT-ATA-ACA 5'.
  - e. 5' TTG-CTA-CAG-TAG 3'.
- 4. A lac repressor turns off the lac genes by binding to
  - a. the lac genes.

c. tRNA.

b. the operator.

d. the promoter.

- 5. Which of the following statements is true?
  - a. An expressed gene is turned off.
  - b. RNA polymerase regulates gene expression.
  - c. A promoter determines whether a gene is expressed.
  - d. Proteins that bind to regulatory sites on DNA determine whether a gene is expressed.

- 6. Two characters that appear in a 9:3:3:1 ratio in the F2 generation should have which of the following properties?
  - a. Each of the characters is controlled by a single gene.
  - b. The genes controlling the characters obey the law of independent assortment.
  - c. Each of the genes controlling the characters has two alleles.
  - d. Only A and C are correct.
  - e. A, B, and C are correct.
- 7. Gene therapy
  - a. is a widely accepted procedure.
  - b. cannot be used to correct genetic disorders.
  - c. involves replacement of a defective allele in sex cells.
  - d. had apparent success in treating disorders involving bone marrow cells.
  - e. has proven to be beneficial to HIV patients.
- 8. What does Figure 13-1 show?



Figure 13-1

- a. polymerase chain reaction
- b. gel electrophoresis
- c. DNA sequencing
- d. a restriction enzyme cutting different sequences of DNA

| 9.  |      | hat is the most logical sequence of steps for splicir to a bacterium? | ng foreign DNA into a plasmid and inserting the plasmid |
|-----|------|-----------------------------------------------------------------------|---------------------------------------------------------|
|     | I.   | Transform bacteria with recombinant DNA r                             | nolecule.                                               |
|     | Π.   | Cut the plasmid DNA using restriction enzyr                           | nes.                                                    |
|     | III. | •                                                                     |                                                         |
|     | IV.  | 1                                                                     | mid DNA fragments.                                      |
|     | V.   |                                                                       | <del>-</del>                                            |
|     | a.   | I, II, IV, III, V                                                     |                                                         |
|     | b.   | IV, V, I, II, III                                                     |                                                         |
|     | c.   | III, II, IV, V, I                                                     |                                                         |
|     | d.   | III, IV, V, I, II                                                     |                                                         |
|     | e.   | II, III, V, IV, I                                                     |                                                         |
| 10. | Du   | uring transcription, an RNA molecule is formed                        |                                                         |
|     | a.   | that is double-stranded.                                              |                                                         |
|     | b.   | inside the nucleus.                                                   |                                                         |
|     | c.   | that is complementary to both strands of DNA.                         |                                                         |
|     | d.   | that is complementary to neither strand of DNA.                       |                                                         |
| 11. | Re   | ed-green color blindness is a sex-linked recessive tr                 | rait in humans. Two people with normal color vision     |
|     | hav  | ve a color-blind son. What are the genotypes of the                   | e parents?                                              |
|     | a.   | XcXc and XCY                                                          |                                                         |
|     | b.   | XCXC and XcY                                                          |                                                         |
|     | c.   | XCXc and XCY                                                          |                                                         |
|     | d.   | XCXC and XCY                                                          |                                                         |
|     | e.   | XcXc and XcY                                                          |                                                         |
| 12. | Wh   | hen during the cell cycle is a cell's DNA replicated                  | 1?                                                      |
|     | a.   | M phase c.                                                            | S phase                                                 |
|     | b.   | G2 phase d.                                                           | G1 phase                                                |
|     |      |                                                                       |                                                         |
|     |      |                                                                       |                                                         |

Use the figure below to answer the following questions. The DNA profiles below represent four different individuals.

| A.          | В.                                      | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.          |
|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| E0000000    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|             |                                         | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j           |
|             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| WEST-COLUMN |                                         | Manage Ma |             |
|             | - monomon                               | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|             | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |
|             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********** |
| 2000000     |                                         | 45000054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|             | States cont                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| _           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|             |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *******     |
|             | enterings.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********   |
|             |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|             |                                         | specialis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|             |                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|             | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

- \_\_\_ 13. Which of the following statements is most likely true?
  - a. D is the child of B and C.
  - b. D is the child of A and B.
  - c. D is the child of A and C.
  - d. B is the child of A and C.
  - e. A is the child of C and D.
  - 14. Gene regulation in eukaryotes
    - a. allows for cell specialization.
    - b. usually involves operons.
    - c. includes the action of DNA polymerase.
    - d. is simpler than in prokaryotes.
  - 15. Which enzyme catalyzes the elongation of a DNA strand in the  $5' \rightarrow 3'$  direction?
    - a. DNA ligase
    - b. topoisomerase
    - c. DNA polymerase
    - d. primase
    - e. helicase
  - 16. One possible result of chromosomal breakage is for a fragment to join a nonhomologous chromosome. This is called a (an)
    - a. translocation.
    - b. disjunction.
    - c. duplication.
    - d. inversion.
    - e. deletion.

| 17. | The segment of DNA shown in the figure below has restriction sites I and II, which create restriction |
|-----|-------------------------------------------------------------------------------------------------------|
|     | fragments A, B, and C. Which of the gels produced by electrophoresis shown below best represents the  |
|     | separation and identity of these fragments?                                                           |

| ] |   | 1 |
|---|---|---|
| Α | В | C |



## 18. SRY is

- a. a gene present on the Y chromosome that triggers male development.
- b. an autosomal gene that is required for the expression of genes on the X chromosome.
- c. required for development, and males or females lacking the gene do not survive past early childhood.
- d. a gene present on the X chromosome that triggers female development.
- e. an autosomal gene that is required for the expression of genes on the Y chromosome.
- 19. What is the difference between a monohybrid cross and a dihybrid cross?
  - a. A monohybrid cross involves organisms that are heterozygous for a single character, whereas a dihybrid cross involves organisms that are heterozygous for two characters.
  - b. A monohybrid cross produces a single progeny, whereas a dihybrid cross produces two progeny.
  - c. A monohybrid cross results in a 9:3:3:1 ratio whereas a dihybrid cross gives a 3:1 ratio.
  - d. A monohybrid cross involves a single parent, whereas a dihybrid cross involves two parents.
  - e. A monohybrid cross is performed only once, whereas a dihybrid cross is performed twice.

- 20. Which of the following statements about mitochondria is false?
  - a. Because mitochondria are present in the cytoplasm, mitochondrial diseases are transmitted maternally.
  - b. Mitochondria contain circular DNA molecules that code for proteins and RNAs.
  - Like nuclear genes, mitochondrial genes usually follow Mendelian patterns of inheritance.
  - d. Because of the role of the mitochondria in producing cellular energy, mitochondrial diseases often affect the muscles and nervous system.
  - e. Many mitochondrial genes encode proteins that play roles in the electron transport chain and ATP synthesis.
- 21. Which of the following happens at the conclusion of meiosis I?
  - a. The chromosome number is conserved.
  - b. Sister chromatids are separated.
  - c. Homologous chromosomes are separated.
  - d. Four daughter cells are formed.
  - e. The sperm cells elongate to form a head and a tail end.
- 22. The human X and Y chromosomes are
  - a. both present in every somatic cell of males and females alike.
  - b. of approximately equal size.
  - c. almost entirely homologous, despite their different names.
  - d. called "sex chromosomes" because they determine an individual's sex.
  - e. all of the above
- 23. Which of the following is *not* a part of the eukaryotic transcription initiation complex?
  - a. RNA polymerase
  - b. snRNP
  - c. promoter
  - d. transcription factors
  - e. TATA box
- 24. Which of the following techniques do scientists use to make many copies of a gene?
  - a. polymerase chain reaction
- c. transformation

b. gel electrophoresis

- d. cloning
- 25. What is shown in Figure 11-1?



Figure 11-1

- a. anaphase I of meiosis
- b. crossing-over

- c. independent assortment
- d. incomplete dominance

| 26.     | Colorblindness is more common in males than in females because                                                 |
|---------|----------------------------------------------------------------------------------------------------------------|
|         | a. males who are colorblind have two copies of the allele for colorblindness.                                  |
|         | b. fathers pass the allele for colorblindness to their sons only.                                              |
|         | c. the allele for colorblindness is recessive and located on the X chromosome.                                 |
|         | d. the allele for colorblindness is located on the Y chromosome.                                               |
| 27.     | A cross between homozygous purple-flowered and homozygous white-flowered pea plants results in                 |
|         | offspring with purple flowers. This demonstrates                                                               |
|         | a. the mistakes made by Mendel.                                                                                |
|         | b. the blending model of genetics.                                                                             |
|         | c. dominance.                                                                                                  |
|         | d. true-breeding.                                                                                              |
|         | e. a dihybrid cross.                                                                                           |
| 28.     | Bacteria containing recombinant plasmids are often identified by which process?                                |
|         | a. using radioactive tracers to locate the plasmids                                                            |
|         | b. removing the DNA of all cells in a culture to see which cells have plasmids                                 |
|         | c. examining the cells with an electron microscope                                                             |
|         | d. exposing the bacteria to an antibiotic that kills cells lacking the plasmid                                 |
|         | e. producing antibodies specific for each bacterium containing a recombinant plasmid                           |
| 29.     | After telophase I of meiosis, the chromosomal makeup of each daughter cell is                                  |
|         | a. haploid, and the chromosomes are composed of two chromatids.                                                |
|         | b. tetraploid, and the chromosomes are composed of two chromatids.                                             |
|         | c. haploid, and the chromosomes are composed of a single chromatid.                                            |
|         | d. diploid, and the chromosomes are composed of a single chromatid.                                            |
|         | e. diploid, and the chromosomes are composed of two chromatids.                                                |
| 30.     | The DNA double helix has a uniform diameter because, which have two rings, always pair with,                   |
|         | which have one ring.                                                                                           |
|         | a. deoxyribose sugars; ribose sugars                                                                           |
|         | b. purines; pyrimidines                                                                                        |
|         | c. nucleotides; nucleoside triphosphates                                                                       |
|         | d. ribose sugars; deoxyribose sugars                                                                           |
|         | e. pyrimidines; purines                                                                                        |
| <br>31. | Which of the following best describes the complete sequence of steps occurring during every cycle of PCR?      |
|         | 1. The primers hybridize to the target DNA.                                                                    |
|         | 2. The mixture is heated to a high temperature to denature the double stranded target DNA.                     |
|         | 3. Fresh DNA polymerase is added.                                                                              |
|         | 4. DNA polymerase extends the primers to make a copy of the target DNA.                                        |
|         | a. 2, 3, 4                                                                                                     |
|         | b. 2, 1, 4                                                                                                     |
|         | c. 3, 4, 1, 2<br>d. 3, 4, 2                                                                                    |
|         | e. 1, 3, 2, 4                                                                                                  |
| 22      |                                                                                                                |
| <br>32. | Which of the following is the term for a human cell that contains 22 pairs of autosomes and two X chromosomes? |
|         |                                                                                                                |
|         | a. an untertilized egg cell b. a sperm cell                                                                    |
|         | c. a male somatic cell                                                                                         |
|         | d. a female somatic cell                                                                                       |
|         | e. both A and D                                                                                                |
|         |                                                                                                                |

|                                         | 33. |          | ross of a white hen with<br>own as                | i a blaci | rooster prod   | uce      | es erminette-color offspring. This type of inheritance is  |
|-----------------------------------------|-----|----------|---------------------------------------------------|-----------|----------------|----------|------------------------------------------------------------|
|                                         |     | a.       | polygenic inheritance.                            |           | (              | c.       | codominance.                                               |
|                                         |     | b.       | multiple alleles.                                 |           | (              | 1.       | incomplete dominance.                                      |
|                                         |     | Ref      | fer to the result below to                        | answei    | the following  | g qı     | uestions.                                                  |
|                                         |     |          | all plant is crossed with ental plants.           | a short   | plant, and the | pro      | ogeny are all intermediate in size between the two         |
|                                         | 34. | Thi      | s could be an example of                          |           |                |          |                                                            |
|                                         |     | a.       | incomplete dominance                              |           |                |          |                                                            |
|                                         |     | b.       | polygenic inheritance.                            |           | ·              |          |                                                            |
|                                         |     | c.<br>d. | complete dominance. A and B                       |           |                |          |                                                            |
|                                         |     | e.       | B and C                                           |           |                |          |                                                            |
|                                         | 35. |          | e polymerase chain reac                           | tion is i | mportant beca  | use      | e it allows us to                                          |
| *************************************** |     | a.       | incorporate genes into                            |           |                |          |                                                            |
|                                         |     | b.       | make many copies of a                             | a targete | d segment of   | DN       | VA.                                                        |
|                                         |     | c.       | insert eukaryotic gene                            |           | • •            | smi      | ds.                                                        |
|                                         |     | d.       | make DNA from RNA                                 |           |                |          |                                                            |
|                                         | 26  | e.       | insert regulatory seque                           |           | •              | _        |                                                            |
|                                         | 36. |          | en during the cell cycle<br>only during the G1 ph |           |                |          |                                                            |
|                                         |     | a.<br>b. | only during the M pha                             |           |                | e.<br>1. | only when they are being replicated only during interphase |
|                                         |     | For      | the following question.                           | s, match  | the key eveni  | t of     | meiosis with the stages listed below.                      |
|                                         |     | I.       | prophase I                                        | V.        | prophase II    |          |                                                            |
|                                         |     | II.      | metaphase I                                       | VI.       | metaphase 1    | 1        | ·                                                          |
|                                         |     | Ш.       | anaphase I                                        | VII.      | anaphase II    |          |                                                            |
|                                         |     | IV.      | telophase I                                       | VIII.     | telophase II   |          |                                                            |
|                                         | 37. | Cer      | ntromeres of sister chron                         | matids u  | ncouple and o  | chr      | omatids separate.                                          |
|                                         |     | a.       | II.                                               |           |                |          |                                                            |
|                                         |     | b.       | VII<br>IV                                         |           |                |          |                                                            |
|                                         |     | c.<br>d. | III                                               |           |                |          |                                                            |
|                                         |     | e.       | V                                                 |           |                |          |                                                            |
|                                         | 38. | Αħ       |                                                   | notypica  | llv female. bu | ıt h     | er interphase somatic nuclei do not show the presence of   |
|                                         |     |          |                                                   |           |                |          | acerning her is probably true?                             |
|                                         |     | a.       | She has two Y chromo                              |           | C              |          |                                                            |
|                                         |     | b.       | She has Turner syndro                             |           |                |          |                                                            |
|                                         |     | c.       | She has Klinefelter sy                            |           |                |          |                                                            |
|                                         |     | d.       | She has the normal nu                             |           |                | ome      | es.                                                        |
|                                         |     | e.       | She has an extra X chi                            | omosor    | ne.            |          |                                                            |

|             | 39. | Cytosine makes up 38% of the nucleotides in a sample of DNA from an organism. Approximately, what percentage of the nucleotides in this sample will be thymine?                                              |
|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |     | a. 12<br>b. 31                                                                                                                                                                                               |
|             |     | c. 38                                                                                                                                                                                                        |
|             |     | <ul><li>d. 24</li><li>e. It cannot be determined from the information provided.</li></ul>                                                                                                                    |
|             | 40. | Black fur in mice $(B)$ is dominant to brown fur $(b)$ Short tails $(T)$ are dominant to long tails $(t)$ . What fraction of the progeny of the cross BbTt $\times$ BBtt will have black fur and long tails? |
|             |     | a. 1/2                                                                                                                                                                                                       |
|             |     | b. 1/16                                                                                                                                                                                                      |
|             |     | c. 3/8                                                                                                                                                                                                       |
|             |     | d. 3/16                                                                                                                                                                                                      |
|             |     | e. 9/16                                                                                                                                                                                                      |
| <del></del> | 41. | What is the role of the spindle during mitosis?                                                                                                                                                              |
|             |     | <ul><li>a. It duplicates the DNA.</li><li>b. It breaks down the nuclear membrane.</li><li>c. It helps separate the chromosomes.</li><li>d. It divides the cell in half.</li></ul>                            |
|             |     |                                                                                                                                                                                                              |
|             | 42. | If a chromosome lacks certain genes, what has most likely occurred?                                                                                                                                          |
|             |     | <ul><li>a. an inversion</li><li>b. disjunction</li></ul>                                                                                                                                                     |
|             |     | c. a deletion                                                                                                                                                                                                |
|             |     | d. a nonduplication                                                                                                                                                                                          |
|             |     | e. a translocation                                                                                                                                                                                           |
|             | 43. | Which of the following best describes the addition of nucleotides to a growing DNA chain?                                                                                                                    |
|             |     | a. A nucleoside monophosphate is added to the 3' end of the DNA.                                                                                                                                             |
|             |     | b. A nucleoside diphosphate is added to the 5' end of the DNA, releasing a molecule of                                                                                                                       |
|             |     | phosphate.                                                                                                                                                                                                   |
|             |     | c. A nucleoside diphosphate is added to the 3' end of the DNA, releasing a molecule of phosphate.                                                                                                            |
|             |     | d. A nucleoside triphosphate is added to the 3' end of the DNA, releasing a molecule of pyrophosphate.                                                                                                       |
|             |     | e. A nucleoside triphosphate is added to the 5' end of the DNA, releasing a molecule of pyrophosphate.                                                                                                       |
|             | 44. | A recombinant plasmid gets inside a bacterial cell by                                                                                                                                                        |
|             |     | a. transformation. c. radiation.                                                                                                                                                                             |
|             |     | b. hybridization. d. recombination.                                                                                                                                                                          |
|             | 45. | What is the function of DNA polymerase?                                                                                                                                                                      |
|             |     | a. to seal together the broken ends of DNA strands                                                                                                                                                           |
|             |     | b. to rejoin the two DNA strands (one new and one old) after replication                                                                                                                                     |
|             |     | c. to unwind the DNA helix during replication                                                                                                                                                                |
|             |     | d. to degrade damaged DNA molecules                                                                                                                                                                          |
|             |     | e. to add nucleotides to the end of a growing DNA strand                                                                                                                                                     |

| <br>46.  | Two true-breeding stocks of pea plants are crossed. One parent has red, axial flowers and the other has whit terminal flowers; all F <sub>1</sub> individuals have red, axial flowers. If 1,000 F <sub>2</sub> offspring resulted from the cross, approximately how many of them would you expect to have red, terminal flowers? (Assume independent assortment). |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | a. 65<br>b. 565                                                                                                                                                                                                                                                                                                                                                   |
|          | c. 250                                                                                                                                                                                                                                                                                                                                                            |
|          | d. 190<br>e. 750                                                                                                                                                                                                                                                                                                                                                  |
| <br>47.  | When crossing a homozygous recessive with a heterozygote, what is the chance of getting an offspring with the homozygous recessive phenotype?                                                                                                                                                                                                                     |
|          | a. 50%                                                                                                                                                                                                                                                                                                                                                            |
|          | b. 25%<br>c. 75%                                                                                                                                                                                                                                                                                                                                                  |
|          | d. 0%                                                                                                                                                                                                                                                                                                                                                             |
|          | e. 100%                                                                                                                                                                                                                                                                                                                                                           |
| <br>48.  | Two plants are crossed, resulting in offspring with a 3:1 ratio for a particular trait. This suggests a. that the parents were both heterozygous.                                                                                                                                                                                                                 |
|          | <ul><li>a. that the parents were both heterozygous.</li><li>b. that a blending of traits has occurred.</li></ul>                                                                                                                                                                                                                                                  |
|          | c. that the parents were true-breeding for contrasting traits.                                                                                                                                                                                                                                                                                                    |
|          | d. that each offspring has the same alleles.                                                                                                                                                                                                                                                                                                                      |
|          | e. incomplete dominance.                                                                                                                                                                                                                                                                                                                                          |
| <br>49.  | RNA polymerase and DNA polymerase differ in that                                                                                                                                                                                                                                                                                                                  |
|          | a. RNA polymerase is much more accurate than DNA polymerase.                                                                                                                                                                                                                                                                                                      |
|          | b. RNA polymerase can initiate RNA synthesis, but DNA polymerase requires a primer to                                                                                                                                                                                                                                                                             |
|          | initiate DNA synthesis.                                                                                                                                                                                                                                                                                                                                           |
|          | c. RNA polymerase binds to single-stranded DNA, and DNA polymerase binds to double-stranded DNA.                                                                                                                                                                                                                                                                  |
|          | d. RNA polymerase uses RNA as a template, and DNA polymerase uses a DNA template.                                                                                                                                                                                                                                                                                 |
|          | e. RNA polymerase does not need to separate the two strands of DNA in order to                                                                                                                                                                                                                                                                                    |
|          | synthesize an RNA copy, whereas DNA polymerase must unwind the double helix before it can replicate the DNA.                                                                                                                                                                                                                                                      |
| <br>50.  | A woman has six sons. The chance that her next child will be a daughter is                                                                                                                                                                                                                                                                                        |
|          | a. 1/2.                                                                                                                                                                                                                                                                                                                                                           |
|          | b. 5/6.<br>c. 0.                                                                                                                                                                                                                                                                                                                                                  |
|          | d. 1/6.                                                                                                                                                                                                                                                                                                                                                           |
|          | e. 1.                                                                                                                                                                                                                                                                                                                                                             |
| 51.      | Which of the following genotypes result in the same phenotype?                                                                                                                                                                                                                                                                                                    |
| <br>- 41 | a. IBIB and IAIB c. IBi and ii                                                                                                                                                                                                                                                                                                                                    |
|          | b. IBIB and IBi d. IAIA and IAIB                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                   |

Use the following information to answer the questions below.

A woman who has blood type A, has a daughter who is type O positive and a son who is type B negative. Rh positive is a simple dominant trait over Rh negative.

- 52. Which of the following is the probable genotype for the mother?
  - a. I<sup>A</sup>irr
  - b.  $I^AI^ARr$
  - c. IAiRr
  - d.  $I^{A}I^{A}RR$
  - e. I<sup>A</sup>iRR
- 53. Which of the following is a nucleotide found in DNA?
  - a. deoxyribose + phosphate group + cytosine
  - b. ribose + phosphate group + uracil
  - c. ribose + phosphate group + thymine
  - d. deoxyribose + phosphate group + uracil
- 54. Which of the following is (are) true for alleles?
  - a. They can be identical or different for any given gene in a somatic cell.
  - b. They can be dominant or recessive.
  - c. They can represent alternative forms of a gene.
  - d. Only A and B are correct.
  - e. A, B, and C are correct.

## Other

## USING SCIENCE SKILLS

The pedigree shows the inheritance of free earlobes and attached earlobes in five generations of a family. Attached earlobes are caused by a recessive allele (f).



Figure 14-2

55. **Predicting** Predict the genotype and phenotype of individual 14 in Figure 14–2.