	(Stellar Evo)	TOTAL	
50	50	100	
	50	50 50	

Bonus (+1) Merger of 2 neutron stars (kilonova) – the event was GW170817

Part I: Deep Sky Objects (50 points)

- 1. X-ray
- 2. Torus
- 3. Pulsar Wind Nebula (PWN)
- 4. NGC 6357 (Lobster Nebula)
- 5. Open cluster
- 6. Emission
- 7. NGC 7822 (Sharpless 171)
- 8. "Elephant trunks" (or cold molecular pillars, if you're no fun)
- 9. [T2] Can see through dust in infrared
- 10. S Doradus
- 11. P Cygni profiles
- 12. Cold material surrounding the star (which was possibly ejected by it) is moving towards us
- 13. Large Magellanic Cloud (LMC)
- 14. HR 5171 A (V766 Centauri)
- 15. Upper center
- 16. [T4] Too massive (will collapse directly into a compact object)

- 17. X-ray
- 18. Radio emission is from jet (pointed at us), gamma rays are from torus (perpendicular)
- 19. W49B
- 20. Gamma-ray bursts (long GRBs)
- 21. Black hole
- 22. Most SNRs are spherical, but this one is not
- 23. AG Carinae
- 24. It was ejected by stellar wind or outburst
- 25. Wolf-Rayet star
- 26. DEM L241
- 27. X-ray
- 28. We see (periodic) changes in its velocity indicating that it is orbiting something
- 29. Neutron star
- 30. Accretion
- 31. The material has angular momentum
- 32. SN 1987A

- 33. Blue supergiants weren't thought to go supernova, according to evolution models
- 34. Neutrinos
- 35. D
- 36. [T9] Absorption
- 37. Betelgeuse
- 38. Supernova (Type II, core-collapse)
- 39. ASASSN-15lh
- 40. It was a hypernova (overluminous Type I SN) -OR- it was a tidal disruption event (TDE)
- 41. The purple one (has some extended emission)

- 42. Eddington Limit
- 43. NuSTAR
- 44. IC 443 (Sharpless 248)
- 45. Neutron star
- 46. The material they are interacting with has different properties (density, temperature, etc)
- 47. RCW 103 (technically the pulsar itself is called 1E 161348-5055, or 1E 1613)
- 48. X-ray
- 49. Rotational energy (of the pulsar)
- 50. Magnetar

Part II: Stellar Evolution (50 points)

- 51. [T10] A
- 52. All H is ionized, so it can't form spectral lines
- 53. TiO (titanium oxide)
- 54. Magnitude difference or flux ratio in different filter bands
- 55. [T6] Presence of H (Type I doesn't have it)
- 56. He

57. Wolf-Rayet stars

- 58. Fe (iron)
- 59. r-process (rapid) -OR- s-process (slow)
- 60. Neutron degeneracy pressure
- 61. [T8] Beam of radiation sweeps across Earth (rotation and radiation axes are misaligned)
- 62. Orbits or radial pulsations can't happen fast enough to match fastest pulsar periods

63.	The	eir gravity still aff	ects other objects	73.	a.	0.36 AU	(accept 0.34 to 0.38)
64.	[T7 edg	7] Only see eclig e-on (but it could	pses when the system is have other inclinations)		b.	[T5] 1.4	(accept 1.3 to 1.5)
65.	Ins	tability strip			c.	34 M _⊙	(accept 30 to 40)
66.	6. [T3] Opacity changes with temperature (kappa mechanism)				d.	14 M _O	(accept 12 to 17)
67.	7. Semi-regular variables pulsate in overtones, instead of the fundamental mode like Miras			74.	a.	-5.65	(accept -5.55 to -5.75)
68.	Sup	pernovae			b.	11.7 kpc	(accept 11.2 to 12.3)
69.	0 -(OR- Ia-o -OR- Ia	+		c.	-4.05 5.6 kpc	(accept -3.95 to -4.15) (accept 5.3 to 5.9)
70.	Blu	ie loops		75.	a.	3 L _O	(accept 2 to 4)
71.	a.	107 pc	(accept 105 to 110)		b.	1.3 М _О	(accept 1.2 to 1.4)
72.	a.	4300 K	(accept 4200 to 4400)		c.	5 Gyr	(accept 4.0 to 6.5)
	b.	$2.0 * 10^7 W/m^2$	(accept 1.8E7 to 2.1E7)		d.	Open cluster (a very old open cluster, but still too young to be a globular cluster)	
	c.	[T1] 0.20 L _O	(accept 0.18 to 0.22)				