Thermodynamics B/C

wec01
Member
Member
Posts: 220
Joined: Fri Feb 22, 2019 4:02 pm
Division: Grad
State: VA
Has thanked: 0
Been thanked: 0

Re: Thermodynamics B/C

Post by wec01 »

JoeyC wrote:RMS (relative molecular speed0 =sqrt(3RT/M)
where R is the ideal gas constant, T is temperature, and M is mass.
RMS stands for root-mean-squared, not relative molecular speed, so it's the square root of the mean of the squared velocities.
2019 Division C Nationals Medals:
4th place Fossils
5th place Sounds of Music
2nd place Thermodynamics
smayya337
Member
Member
Posts: 120
Joined: Thu Nov 02, 2017 5:15 pm
Division: C
State: VA
Pronouns: He/Him/His
Has thanked: 27 times
Been thanked: 30 times

Re: Thermodynamics B/C

Post by smayya337 »

JoeyC wrote:RMS (relative molecular speed0 =sqrt(3RT/M)
where R is the ideal gas constant, T is temperature, and M is mass.
I might be wrong, but doesn't RMS stand for root mean square?

EDIT: wec01 beat me to it lol
TJHSST '22 | UVA '26
smayya337's Userpage
User avatar
JoeyC
Member
Member
Posts: 307
Joined: Tue Nov 07, 2017 1:43 pm
Division: C
State: TX
Has thanked: 503 times
Been thanked: 73 times

Re: Thermodynamics B/C

Post by JoeyC »

huh, whoops. Still the same equation though.
Ohayo!
Dynamic Planet, Protein Modeling, Fast Facts, Thermodynamics
Dynamic Planet, Machines, Ornith
John 14:15
Scientia Potentia Est
Has Gotten Coronavirus: No

In memory of Ravi Zacharias, a friend of Christ.
wec01
Member
Member
Posts: 220
Joined: Fri Feb 22, 2019 4:02 pm
Division: Grad
State: VA
Has thanked: 0
Been thanked: 0

Re: Thermodynamics B/C

Post by wec01 »

Since nobody seems to be posting, here's a question:

Suppose there is a system containing 30 atoms that have 3 accessible micro-states.

a) How many atoms must be in each micro-state in order for entropy to be maximized?

b) What is the entropy of the system in part a)?
2019 Division C Nationals Medals:
4th place Fossils
5th place Sounds of Music
2nd place Thermodynamics
smayya337
Member
Member
Posts: 120
Joined: Thu Nov 02, 2017 5:15 pm
Division: C
State: VA
Pronouns: He/Him/His
Has thanked: 27 times
Been thanked: 30 times

Re: Thermodynamics B/C

Post by smayya337 »

wec01 wrote:Since nobody seems to be posting, here's a question:

Suppose there is a system containing 30 atoms that have 3 accessible micro-states.

a) How many atoms must be in each micro-state in order for entropy to be maximized?

b) What is the entropy of the system in part a)?
a) With maximum entropy, all microstates are equally probable, so the number of atoms in each should be 30/3 = [b]10.[/b]
b) The formula for entropy is S = k ln(W), so we can plug in Boltzmann's constant of 1.38065 x 10^-23 J/K and the number of microstates into k and W, respectively, to get [b]S = 1.38065 * 10^(-23) * ln(3) = 1.5227316 * 10^-23 J/K.[/b]
TJHSST '22 | UVA '26
smayya337's Userpage
wec01
Member
Member
Posts: 220
Joined: Fri Feb 22, 2019 4:02 pm
Division: Grad
State: VA
Has thanked: 0
Been thanked: 0

Re: Thermodynamics B/C

Post by wec01 »

smayya337 wrote:
wec01 wrote:Since nobody seems to be posting, here's a question:

Suppose there is a system containing 30 atoms that have 3 accessible micro-states.

a) How many atoms must be in each micro-state in order for entropy to be maximized?

b) What is the entropy of the system in part a)?
a) With maximum entropy, all microstates are equally probable, so the number of atoms in each should be 30/3 = [b]10.[/b]
b) The formula for entropy is S = k ln(W), so we can plug in Boltzmann's constant of 1.38065 x 10^-23 J/K and the number of microstates into k and W, respectively, to get [b]S = 1.38065 * 10^(-23) * ln(3) = 1.5227316 * 10^-23 J/K.[/b]
You are using the correct formula however omega doesn't represent the number of micro-states it represents the number of ways the system's state can be achieved. In this case it would be the number of combinations that have 10 atoms in each state so: [math]30!/(10!)^3[/math] which would give about 4.05 * 10^-22 J/K
Your turn!
2019 Division C Nationals Medals:
4th place Fossils
5th place Sounds of Music
2nd place Thermodynamics
smayya337
Member
Member
Posts: 120
Joined: Thu Nov 02, 2017 5:15 pm
Division: C
State: VA
Pronouns: He/Him/His
Has thanked: 27 times
Been thanked: 30 times

Re: Thermodynamics B/C

Post by smayya337 »

An engine has a compression ratio of 10. The gas inside is an ideal monatomic gas.

a) Calculate the Otto efficiency of this engine.
b) Calculate the Diesel efficiency of this engine with a cutoff ratio of 5.
c) Is there a value for the cutoff ratio that causes the Otto and Diesel efficiencies to be equal? If so, what is it?
TJHSST '22 | UVA '26
smayya337's Userpage
mjcox2000
Member
Member
Posts: 121
Joined: Fri May 09, 2014 3:34 am
Division: Grad
State: VA
Has thanked: 0
Been thanked: 0

Re: Thermodynamics B/C

Post by mjcox2000 »

smayya337 wrote:An engine has a compression ratio of 10. The gas inside is an ideal monatomic gas.

a) Calculate the Otto efficiency of this engine.
b) Calculate the Diesel efficiency of this engine with a cutoff ratio of 5.
c) Is there a value for the cutoff ratio that causes the Otto and Diesel efficiencies to be equal? If so, what is it?
If [math]r[/math] is compression ratio and [math]\alpha[/math] is cutoff ratio:
[math]\eta_{Otto}=1-\frac{1}{r^{\gamma-1}}=1-\frac{1}{10^{\frac23}}=0.784[/math] (or 0.8 with sig figs)
[math]\eta_{Diesel}=1-\frac{\alpha^\gamma-1}{r^{\gamma-1}\gamma(\alpha-1)}=1-\frac{5^{\frac53}-1}{10^{\frac23}\cdot\frac53\cdot4}=0.559[/math] (or 0.6 with sig figs)
These efficiencies are equal when [math]\frac{\alpha^\gamma-1}{\gamma(\alpha-1)}=1\implies\alpha^\gamma-1=\gamma(\alpha-1)[/math], which is satisfied if [math]\alpha=1[/math]. However, this has no physical significance as [math]\alpha=1[/math] would correspond to an engine doing no work per cycle.
MIT ‘23
TJHSST ‘19
Longfellow MS

See my user page for nationals medals and event supervising experience.
smayya337
Member
Member
Posts: 120
Joined: Thu Nov 02, 2017 5:15 pm
Division: C
State: VA
Pronouns: He/Him/His
Has thanked: 27 times
Been thanked: 30 times

Re: Thermodynamics B/C

Post by smayya337 »

mjcox2000 wrote:
smayya337 wrote:An engine has a compression ratio of 10. The gas inside is an ideal monatomic gas.

a) Calculate the Otto efficiency of this engine.
b) Calculate the Diesel efficiency of this engine with a cutoff ratio of 5.
c) Is there a value for the cutoff ratio that causes the Otto and Diesel efficiencies to be equal? If so, what is it?
If [math]r[/math] is compression ratio and [math]\alpha[/math] is cutoff ratio:
[math]\eta_{Otto}=1-\frac{1}{r^{\gamma-1}}=1-\frac{1}{10^{\frac23}}=0.784[/math] (or 0.8 with sig figs)
[math]\eta_{Diesel}=1-\frac{\alpha^\gamma-1}{r^{\gamma-1}\gamma(\alpha-1)}=1-\frac{5^{\frac53}-1}{10^{\frac23}\cdot\frac53\cdot4}=0.559[/math] (or 0.6 with sig figs)
These efficiencies are equal when [math]\frac{\alpha^\gamma-1}{\gamma(\alpha-1)}=1\implies\alpha^\gamma-1=\gamma(\alpha-1)[/math], which is satisfied if [math]\alpha=1[/math]. However, this has no physical significance as [math]\alpha=1[/math] would correspond to an engine doing no work per cycle.
Correct!
TJHSST '22 | UVA '26
smayya337's Userpage
mjcox2000
Member
Member
Posts: 121
Joined: Fri May 09, 2014 3:34 am
Division: Grad
State: VA
Has thanked: 0
Been thanked: 0

Re: Thermodynamics B/C

Post by mjcox2000 »

What type of heat engine can a hurricane be likened to? What is its source of heat and where does it exhaust the heat to? Assuming typical temperatures, pressures, etc. for the source of heat and exhaust (you may want to look up these typical values), what is its theoretical maximum efficiency?
MIT ‘23
TJHSST ‘19
Longfellow MS

See my user page for nationals medals and event supervising experience.

Return to “2019 Question Marathons”