Important vocab to use when googling: Eclipsing Binary Variable Stars, First/Second/etc Contact, Transit Light Curves
I would like to frame this further. This goes along perfectly with the idea of how eclipsing works. My problem is actually the blue lines look like the second and third contacts to me. Also, a note is that ingress is the period where the planet begins to cover the star (aka going from first to second contact, first = first side of planet begins to touch star and is where we see a BEGIN to the drop in intensity, second = where the circle of the planet fully passes over the star, so the first point of the light curve where we get the new "flat bar"). Egress is the opposite. I would personally say the question was poorly made, unless the FM people want to come on here and explain it themselves (I want to clarify no offense meant, it could be a fantastic question for all I know, and I've actually made mistakes too...to me it's not so relevant as I'll explain).
http://mafija.fmf.uni-lj.si/seminar/fil ... _stars.pdf actually explains these variable stars fairly well and is what you're looking for. Found it last year, this year search terms were: "binary star transit light curve and velocity pdf" and looked through all the pdfs I had (unless my search history is just biased >.>). The essential concept going on is that how fast the transit occurs IS related to how fast the larger and smaller objects are orbiting around eachother. It is still important in that sense for this year. If you drew a diagram, you could see the two objects for the primary eclipse at least that object 1 goes velocity v_1 say to the right. Velocity v_2 would be the opposite to the left. If you looked, relatively, the velocities would actually add! This is just like look out the window of a car and seeing cars go in the same direction as you vs. opposite directions, except the eclipse basically allows us to see this relative motion ourselves. As I recall that formula also only works with edge-on cases (I can tell the inclination...won't explain why).
My opinion is people should not be worrying too much about that one specific formula (though, I'm not putting together the questions/practicing, so others would I guess know better). For exoplanets the analysis (I can't remember why off the top of my head) tends to be measurement of flux or intensity drop on the transit curve to get radius. My guess would be that it's more difficult to get the Doppler spectroscopy measurements for systems over time, which would be necessary for constructing radial velocity curves. This is why more often we use transit method, it is photometric (and you can think on why that's easier to measure

). With just photometric data alone, though, the flux drop ratio gives the radius pretty directly (I think this has been discussed).
This is part of the issue with trying to only go off past tests for this year, you have to judge carefully!
B: Crave the Wave, Environmental Chemistry, Robo-Cross, Meteo, Phys Sci Lab, Solar System, DyPlan (E and V), Shock Value
C: Microbe Mission, DyPlan (Fresh Waters), Fermi Questions, GeoMaps, Grav Vehicle, Scrambler, Rocks, Astro
Grad: Writing Tests/Supervising (NY/MI)